skip to main content


Search for: All records

Creators/Authors contains: "Kofke, David A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The virial equation of state (VEOS) provides a rigorous bridge between molecular interactions and thermodynamic properties. The past decade has seen renewed interest in the VEOS due to advances in theory, algorithms, computing power, and quality of molecular models. Now, with the emergence of increasingly accurate first-principles computational chemistry methods, and machine-learning techniques to generate potential-energy surfaces from them, VEOS is poised to play a larger role in modeling and computing properties. Its scope of application is limited to where the density series converges, but this still admits a useful range of conditions and applications, and there is potential to expand this range further. Recent applications have shown that for simple molecules, VEOS can provide first-principles thermodynamic property data that are competitive in quality with experiment. Moreover, VEOS provides a focused and actionable test of molecular models and first-principles calculations via comparison to experiment. This Perspective presents an overview of recent advances and suggests areas of focus for further progress. 
    more » « less
  2. Abstract

    We report virial coefficients up to sixth order in density forN2,O2,NH3, andCO2, covering temperatures from 50 to 1,000 K. The reported values include coefficients and their first three temperature derivatives, for the pure species as well as all of those needed to evaluate full composition dependence of mixtures formed from any or all of these compounds. The values are obtained by calculation of appropriate cluster integrals using Mayer sampling Monte Carlo, with intermolecular interactions described by the Transferable Potential for Phase Equilibria (TraPPE) force field. All coefficients are fit as a function of temperature, yielding a thermodynamic model with analytic dependence on temperature, density, and composition. The coefficients and properties computed from them are compared to experimental data where available.

     
    more » « less